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Exact relations between kinetic gelation and percolation 
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Instituto de Fisica-UNAM, Laboratorio de Cuernavaca, 01000 Mexico DF, Mexico 

Received 14 March 1989 

Abstract. An exact relation between one of the recently introduced models for kinetic 
gelation and random percolation is displayed. This explains the frequently observed identity 
between the exponents of the two models. Moreover, it strongly suggests that any further 
universal properties of percolation are also shared by kinetic gelation. In particular, a 
rigorous inequality due to van den Berg and Kesten can be used to display an inconsistency 
between the observed values of the exponents p and U and the observed value of the fractal 
dimension of the backbone in kine!ic gelation. The more complex issue of the observed 
variation of the amplitude ratio cannot be easily resolved, however. Should the observed 
discrepancies be real, they would, according to our  results, indicate that the amplitude 
ratio can indeed vary depending upon the underlying lattice structure. 

1. Introduction 

A widely used model for the understanding of gelation is the percolation model: it is 
assumed that, during the polymerisation process, bonds form at random between 
polyfunctional units until an infinite network is formed. This clearly represents a rather 
strongly idealised view of the facts. In particular, in the case of addition polymerisation, 
the neglect of kinetic effects has been felt to be of considerable importance. For this 
reason, Manneville and de S&ze [ l ]  introduced a model-now generally known as 
kinetic gelation-to introduce the non-equilibrium features lacking in ordinary perco- 
lation. 

This model-to be described in greater detail in the next section-has been the 
object of considerable study in recent years. In a pioneering study, Herrmann, Landau 
and Stauffer [2] found that the fractal dimension of the clusters thus generated was 
equal to that of ordinary percolation clusters, but that another supposedly universal 
quantity, the amplitude ratio for the susceptibility, was markedly different from its 
ordinary percolation value. In a broad overview of all the variants of the model (which 
are quite numerous indeed) Pandey [3] confirmed the deviation from the percolation 
value. In two dimensions, a more complicated situation arises, as trapping and 
annihilation now become of greater importance, due to the compactness of random 
walks in two dimensions. Nevertheless, the identity between the exponents of kinetic 
gelation and percolation has been confirmed [4]. With additional research, further 
anomalies were noted: first, the cluster size distribution was found to be non-monotonic 
[5] in stark contrast to ordinary lattice percolation. Instead, oscillations were observed 
which made impossible the fitting of the cluster size distribution by a law of the form 
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in the way that is ordinary used in the scaling theory of percolation. Rather, this form 
has to be multiplied by a periodic function of s. Careful numerical work appears to 
indicate that these oscillations die out quite slowly, if indeed they die out at all. 
However, later work [6] showed that this alone could not explain the change in the 
amplitude ratio. Only a change in the (supposedly universal) scaling function f ( x )  
could accomplish this. Moreover, studies of the fractal dimension of the backbone of 
these clusters showed numerically results distinctly different from those obtained in 
ordinary percolation [7]. However, the exponents characterising the shortest path on 
a cluster as well as that characterising diffusion appear to be the same [8,9]. The 
latter is particularly surprising in view of the connection between diffusion and 
conductivity via the Einstein relation. Thus, the identity of the diffusion exponent 
means that the conductivity exponent is the same. Since conductivity is limited to the 
backbone, however, it would appear that a large change in the backbone dimension 
should also manifest itself in the exponent for the conductivity. That this does not 
appear to be the case is therefore a rather unexpected result. 

The purpose of this paper is to show an exact relationship between kinetic gelation 
in one of its simplest variants-the so-called mole’s labyrinth introduced by Herrmann 
[8]-and a random percolation model on a rather complex lattice. This would indicate, 
therefore, that one does not expect any differences between the mole’s labyrinth and 
percolation, other than those ordinarily associated with the lattice. This would appear 
to rule out any of the discrepancies observed above. Indeed, as we shall see, the values 
given for the backbone dimension in [7] are incompatible with the values observed 
for /3 and v. In this case, it is fairly straightforward to identify the reason for a very 
long crossover behaviour. The issue of the amplitude ratio for the susceptibility, 
however, is somewhat more mysterious. 

The organisation of this paper is as follows: in section 2 ,  we define the model and 
all the various parameters that have been varied. In section 3, we give the equivalence 
between the mole’s labyrinth and random percolation. We further discuss the effects 
of the different variants. As will become clear, the effect appears to be-with one 
possible exception-the introduction of short-range correlations into the model. These 
should not change the universality class, a fact confirmed by the numerical finding 
that the other kinetic gelation models show the same kind of behaviour evidenced by 
the mole’s labyrinth. In  section 4 we discuss the apparent conflict between the exact 
results obtained and the numerical data. In particular, we show that the reported 
dimension of the backbone is inconsistent with the data on the fractal dimension of 
the cluster itself, using a rigorous result due to van den Berg and Kesten. 

2. The model 

Kinetic gelation has been defined in many subtly different ways. For this purpose, it 
is probably best to start with the simplest model, the mole’s labyrinth, and proceed to 
introduce the various complications one by one. In this simplest model, one starts 
with a concentration c, of initiators. These are randomly placed on a lattice at time 
zero. They then proceed to move as a random walk. At each step, a bond is created 
between the starting site and the ending site. In this model, of course, sites may be 
connected by multiple bonds, but we shall not assign any particular significance to 
this fact. As time goes on, the various clusters start to bind among each other, until 
they form an infinite network, i.e. a gel. As in ordinary percolation, the following 
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quantities can be defined: n , (  t )  as the number of clusters of s sites at time t ,  Pr( t )  as 
the probability of a site belonging to the infinite cluster (or, in more traditional 
terminology, the gel fraction) and  finally ,y( t )  defined as the weight-averaged cluster 
size excluding the infinite cluster. More precisely: 

where the prime indicates that only the finite clusters should be summed over. The 
time at which x ( t )  diverges is called t ,  and has been found to be identical to the one 
beyond which P , ( t )  becomes different from zero. Defining E as It- t , l / t , ,  one obtains 
the following behaviour : 

x ( t ) = A _ C Y  t s t, 

x( t )  = A + F - ~  t z  t, (2.2) 

P,( t )  = E O  1 2  t , .  

A further exponent U can be defined from the decay of the connectedness function 
g (  r ) ,  which is defined as the probability that two points at a distance r be in the same 
cluster. This is found to be 

exp(-rl€) (2.3) g ( r )  21 r - ( d - 2 ) i r )  

where 6 diverges as E - ’ .  The exponents are therefore quite similar to the ones defined 
analogously in percolation. Within the error bars, they have usually been found to 
agree with the accepted values for percolation [2,8]. 

This led rather naturally to the question as to whether some other characteristic 
quantity might not exist that would distinguish between kinetic gelation and  percolation. 
The fractal dimension dF of the clusters themselves is not enough, since one has the 
relation [ 101 

dr= d - P I U  (2.4) 
and therefore nothing new can be expected from this exponent. Two further quantities, 
however, usually also thought to be universal [ l l ] ,  have been investigated in this 
respect: the susceptibility amplitude ratio R defined as A- /A+  and the fractal dimension 
of the cluster backbone dBB, defined as the set of points connected to infinity by two 
disjoint paths or, equivalently, as the set of self-avoiding paths connecting two widely 
separated points. Numerically, both of these have been found to differ significantly 
from their percolation counterparts in three dimensions: while R has a value of 
approximately 10 in percolation, in kinetic gelation it appears to vary continuously 
with cI eventually settling somewhere around 2 for quite small values of c I .  As for 
dBB, it appears to be approximately 2.3 as opposed to a value of about 1.8 in percolation. 
The situation in two dimensions is somewhat more complex and  has not, to my 
knowledge, been explored as fully. 

Let us now come back to our original purpose and  describe the several variations 
upon this simplest model. The earliest models are defined as follows: a lattice is given, 
filled with f-functional units (f> 2) and a concentration cI of initiators is distributed 
on the lattice. The initiators then move as follows: at each time step, an  initiator is 
selected at random and moved in any direction. If it meets another initiator, a bond 
is created by the move but the two annihilate. If it meets an  unsaturated f-functional 
unit, the move is accepted and  a bond is created. Otherwise, the move is rejected and  
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the initiator remains where it was. An initiator wholly surrounded by saturated initiators 
is said to be trapped. In the case where f is odd, trapping can also occur through the 
impossibility of leaving a saturated $functional unit. 

Clearly, the model just outlined is a far more realistic version of what actually 
occurs in an addition polymerisation situation. Furthermore, additional variants have 
been studied, where the reactive units are taken to be a mixture off- and g-functional 
units. The case g = 2 in particular has been the object of considerable study [3]. An 
additional, also frequently introduced complication is a certain concentration of solvent 
molecules, i.e. molecules which d o  not react at all. While all these profoundly affect 
the phase diagram, however, they d o  not appear to modify the basic results in any 
fundamental way. 

Summarising, the effects of the various modifications can be characterised as 
follows: 

( i )  annihilation: when two initiators meet, they annihilate; 
( i i )  trapping: under given circumstances, an  initiator may not be able to move 

further; 
( i i i )  disorder: depending upon the specific configuration of f- and g-functional 

groups in the neighbourhood of a certain initiator, this initiator’s possibilities to generate 
various types of clusters will be affected: the system is therefore, under these circum- 
stances, no longer translation invariant. 

Each of these features can be (and has been) introduced independently from the 
others. Thus trapping can be suppressed by letting f go to infinity. Annihilation can 
be suppressed by convention and disorder is altogether independent of either. 

All these variants may, in some sense, be said to involve only the rules to move 
the initiators. Others yet concern the way the initiators are introduced into the system: 
whether suddenly or  gradually, whether at  random or  on a periodic array. We shall 
consider these modifications separately, as they are of a very different nature from the 
ones discussed above. 

3. The mole’s labyrinth 

In this section, we wish to display an equivalence between the mole’s labyrinth and  
site percolation on an appropriately chosen lattice. In the mole’s labyrinth, we have 
two parameters determining criticality: cI and  t. While it has, in previous studies, been 
found convenient to vary t at fixed c I ,  we shall d o  the opposite: clearly, this does not 
change anything, apart from the angle at which the phase boundary is crossed. Let 
us call A the d-dimensional lattice on which the system is assumed to be defined. We 
shall assume the dimensions of 11 to be large but finite and denote them by L. For 
definiteness’ sake as well as to maintain translational invariance, we shall use periodic 
boundary conditions on A. This is not, however, essential to the argument. At fixed 
f ,  however, every initiator has performed one  of a certain set of random walks on  A. 
Let Z denote the set of all random walks of t steps starting at the origin. To each 
initiator, therefore, there corresponds an element of Z. Note that, since t never becomes 
infinitely large, the set Z is finite and  does not have a diverging number of elements. 
Let us now define the lattice which will be the crucial construct in what follows: let 

be defined as the set A x Z with the following lattice structure: let us denote elements 
of A be vectors of the form x and elements of Z by Greek letters. We say that two 
elements of r, ( x l ,  c y I )  and  (x2, a*), are connected by a bond if the random walk a, 
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starting at  x, intersects the walk c y 2  starting at  x2. Since, as pointed out above, C is a 
finite set as opposed to A, the dimensions of which go to infinity, the lattice r is merely 
a n  ordinary three-dimensional lattice with connections beyond nearest neighbour. In 
the following, we shall denote elements of r by Greek vectors, say 6. 

From the preceding construction, however, one sees that kinetic gelation at time t 
and concentration c, is obtained by randomly placing initiators on the lattice r. Those 
initiators belonging to the same cluster are connected by construction. The other 
points, however, are, in a sense, invisible. Thus, this procedure does not generate the 
‘full’ clusters but only a ‘skeleton’ consisting of those initiators that belong to the 
clusters at the position they occupied initially. This means that the mass of the clusters 
we have defined is not the same as the mass of the clusters observed in the original 
algorithm. To see that this difference is not essential, however, we proceed as follows: 
to each bond connecting two initiators at x1 and x2, let us assign as weight the total 
number of diferenf  sites on A visited by the two random walks connecting them. We 
can now assign two different masses to every cluster: the first is simply the number of 
initiators in the cluster, the second is the sum of all the weights of the bonds in the 
cluster. Clearly, the actual mass is between those two (it is not necessarily equal to 
the latter, since sites may be visited by three or more walks). By definition, however, 
the weights of each bond lies between 1 and 2t, so that the masses of the clusters in 
the actual model are between the number of initiators and 2t  times that number. 

Thus, for large cluster sizes, no difference is expected between the cluster size 
distribution of the mole in the labyrinth and  that of percolation on the r lattice. 
Further, by universality, no differences are expected in the critical behaviour of the 
cluster size distribution between various lattices. We will attempt to display reasons 
for the discrepancy with numerical results later. For the moment, we have shown that 
the mole’s labyrinth and percolation belong to the same universality class just as two 
versions of the percolation model on two different lattices do. There is one small 
caveat, however: in the mole’s labyrinth, it is usually assumed that no two initiators 
will originally occupy the same site. This condition is not required in random percola- 
tion on the r lattice, since we very well may have two points (x, a l )  and (x, cy2)  being 
both occupied. However, it would be easy to relax that condition on the mole’s 
labyrinth. Further, since the most striking discrepancies are observed at rather small 
c, (of the order of 10-2-10-4), it does not appear at  all likely that this would change 
anything. Furthermore, the introduction of such a constraint on percolation on the r 
lattice would, in fact, amount to a short-range correlation to the percolation problem, 
which is generally assumed not to modify the universality class of percolation. 

Essentially the same remarks hold for the manifold variants of kinetic gelation: 
first they all appear to yield similar discrepancies from percolation as the mole’s 
labyrinth. Second, they can all be accounted for by introducing short-range correlations 
and  possibly disorder in the lattice. Let us consider this in somewhat more detail. 

First let us look at  trapping. The phenomenon of trapping arises from imposing 
the constraint that the path of an  initiator be self-avoiding. This immediately leads to 
redefining E as the set of all allowable paths of f steps of an  initiator in the absence 
of any others. This accounts for such phenomena as self-trapping and the use of 
kinetic growth walks [12, 131 instead of random walks for the propagation of the 
initiators. Trapping, however, has also another aspect, which is somewhat more difficult 
to handle: an  initiator can quite easily be trapped in the cluster generated by another 
initiator. This cannot, of course, be accounted for merely by redefining Z, It can, 
however, be reduced to a short-range correlation on the r lattice by the following 
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considerations: the vector f = (x, a )  of r represents an allowable (i.e. non-self-trapping) 
walk a starting at x. This walk can only be trapped by other walks ql, . . . , qk if these 
walks pass within one lattice spacing ofthe walk f .  This means that the walks q l ,  . . . , q k  
are all within one lattice spacing of being nearest neighbours to f .  Thus, the walks 
capable of trapping f are all in the neighbourhood of f itself, so that the walks which 
f intersects in the presence of trapping by other clusters can be determined knowing 
which of the points one lattice spacing away from a nearest neighbour of f are occupied. 
Thus, f is not automatically connected to all of its occupied nearest neighbours, but 
only to those it encounters before being trapped by one of the walks passing within 
one lattice spacing of it. Although this may appear to be a fairly long-range effect, 
this is not the case if it is borne in mind that we are considering a case where the 
gelation time is not critically large. Note, in particular, that k is bounded from above 
by the number of points accessible in time t and therefore is not critically large in the 
thermodynamic limit. 

Similarly, annihilation is a restriction on the possible paths in much the same way 
as is trapping by another initiator. It can therefore be handled in exactly the same 
manner. Again, for d > 2, annihilation becomes less and less likely as cI goes to zero. 
As we have mentioned before, however, this is where the strongest differences between 
percolation and kinetic gelation appear. For d =2,  the issue of annihilation is par- 
ticularly difficult: since random walks are compact for d s 2, annihilation may become 
more and more important as cI goes to zero. We should not, however, lose sight of 
the fact that, even in two dimensions, the correlations introduced by annihilation do  
not extend further than v‘?, so that they are still properly thought of as short range. 
This is confirmed by the finding [4] that the exponents for percolation and kinetic 
gelation have compatible values. 

As for disorder, such as is introduced by having a random mixture o f f -  and 
g-functional units on the lattice, it can be incorporated by using a slightly more complex 
variation on the r lattice: given an initial mixture, the generalised r lattice is constructed 
as follows: to every point x of A, assign a set Z(x) denoting all walks of t steps 
allowable knowing what units surround x. The lattice is then defined as the set of 
all pairs (x, a ) ,  where x belongs to A and CY to C(x).  The bonds are defined as usual. 
This lattice is not translation invariant any longer. This should not have any effect on 
the exponents but there is some evidence that it might have an effect upon the amplitude 
ratio [14] even in ordinary percolation. However, it should be pointed out that, in 
kinetic gelation, non-universal amplitude ratios have also been observed under circum- 
stances involving no disorder, such as in the mole’s labyrinth. 

4. Discrepancies with numerical data 

In this section, we make a series of hypothetical claims concerning the possible 
mechanisms yielding those features of kinetic gelation which are clearly different from 
percolation. Let us start with the most prominent difference between the cluster size 
distribution of the mole’s labyrinth and that of standard percolation, that is the presence 
of oscillations of finite frequency in s. These may be supposed to arise from the fact 
that the growth process of clusters at low cI may be separated in two rather distinct 
stages: in the first, every initiator grows without interacting with the others (the existence 
of such a stage is a natural consequence of the smallness of c,), whereas in the second, 
the clusters thus formed begin to coalesce and form an infinite network over a 
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comparatively short time span compared with the first stage. Such a picture would 
explain the oscillations as arising from the fact that the building blocks from which 
the clusters are made are themselves random walks of a fairly well determined size, 
so that clusters tend to have masses that are multiples of that characteristic size. Such 
a picture is, however, rather hypothetical at present and numerical work to confirm 
o r  invalidate it would be quite worthwhile. If this picture is indeed correct, the 
frequency of the oscillations should be proportional to the number of sites in a random 
walk connecting two typical nearest-neighbour sites. For the mole’s labyrinth, this 
turns out to be 

s*  = -c;‘/ln c ,  d = 2  

c - 2 / 3  d = 3 .  
(4.1) 

In the case d = 1 there are no such easily defined oscillations of the cluster size 
distribution, due  to the absence of a non-trivial percolation transition. For d 3 4  it is 
not clear whether the oscillations will subsist, as under these circumstances the above 
scenario is not self-consistent: indeed, in such high dimensions, it is quite unlikely 
that two nearest neighbours should coalesce with one another, since random walks 
are then penetrable. Rather, we should expect that every cluster should coalesce with 
roughly equal probability with every cluster within its reach. It is then unclear, whether 
the assumption that the coalescing clusters have a well defined size is still warranted. 
If they do, this size will simply be proportional to t,, which we proceed to estimate. 

The scaling of the critical time t, as a function of the concentration cI can be 
obtained as follows. In two and  three dimensions, the critical time is expected to scale 
as the square of the typical nearest-neighbour distance, that is, as c;’’~. This is due  
to the fact that every initiator is likely to react with one of its nearest neighbours. For 
d 3 4  on the other hand, the following argument gives an  indication of what is to be 
expected: after a time t ,  a given initiator has generated a cluster of radius v? and is 
therefore capable of reaching all the clusters within that distance. The number of such 
clusters is c , td” .  On the other hand, the probability that two such clusters meet is of 
the order t 2 - d ’ 2 .  Therefore, the probability that the cluster has coalesced with another 
becomes of the order of unity when c , t d ” =  t’-d’2 or, in other words, the time after 
which one  expects coalescence is of the order of c ; ’ ( * - ~ ) .  

Note in passing that a similar reasoning could be made for a ballistic version of 
the mole’s labyrinth model, where the initiators move in straight lines with random 
directions. The advantage of such a model is that the dimension above which straight 
lines become transparent to one another is two, so that a three-dimensional simulation 
would allow one to probe this regime and  verify, for example, whether the critical 
time does indeed scale as c ; / ‘ * - ~ * ’  , where the above reasoning has been adapted to 
the ballistic case. Obviously in this particular example, the oscillations are not sup- 
pressed above the dimension where the trajectories become transparent. 

As a summary, it would appear that the oscillations observed in the cluster size 
distribution of kinetic gelation are due to the different way the mass of a cluster is 
calculated: in the model on the r lattice, the mass of a cluster is reckoned by the 
number of initiators that participated in its formation. In ordinary kinetic gelation, 
the sites bound to the cluster by the initiator are also considered. The explanation for 
the oscillation then lies in the fact that every initiator contributes in general a fairly 
well defined, though no doubt fluctuating number of particles to the whole cluster. 
Thus the cluster masses tend to come in multiples of the typical size that a cluster 



994 F Leyvraz 

generated by an initiator reaches before coalescence. This is confirmed by the fact 
[ 151 that the oscillations disappear if the initiators are introduced gradually instead 
of all at the same time. This is readily accounted for by our picture, since at the critical 
time t ,  there will be clusters of all possible sizes, so that it is not possible to talk of a 
well defined typical size of the clusters coalescing at criticality. 

As has been shown in [ 6 ] ,  however, the mere presence of oscillations is not enough 
to explain the difference in amplitude ratio. To this end it would be necessary to 
assume that the scaling function as defined in (1.1) be different for the two models. 
It is generally accepted, however, that such functions are indeed universal, at least to 
the extent of being lattice-independent. The observed lower values of R are therefore 
presumably the result of crossover behaviour. There does not, however, appear to be 
a satisfactory explanation for such a crossover. At first sight, it might appear that we 
have a rather long-range percolation problem, since the bonds on the r lattice can be 
quite long, in terms of the lattice spacing, if cI is small. This would imply that one 
has a long mean-field crossover behaviour until finally the correct behaviour is attained. 
This might in turn be thought to explain the lowering of the amplitude ratio from its 
three-dimensional value, since in mean-field it is equal to one. This is misleading, 
however. The crucial point in this respect is that the spacing in the original lattice A 
is not at all a relevant length scale, except insofar as it sets a ‘capture radius’: two 
clusters react when they come closer to each other than the lattice spacing. However, 
as long as random walks remain opaque to each other, i.e. for d < 4, capture will occur 
irrespectively of the value of the capture radius. This is most easily seen by letting 
this spacing go to zero, keeping the original distribution of initiators fixed. Rescaling 
time appropriately, one is led to a model of kinetic gelation involving continuous 
Brownian motion. For d < 4, however, crossing of two Brownian paths will still occur 
with probability one within finite time. Thus we see that the range of the links should 
not be measured in units of the lattice spacing and are therefore not related to c,. 
Thus the range does not, in fact, go to infinity as c,-*O, unless d 3 4 .  A more correct 
way of posing the problem is to ask about the number of initiators within a distance 
f i  of a given initiator at the critical time. If this number is very large, one expects a 
long mean-field crossover behaviour. This will presumably occur for c,+O in 
dimensions higher than four. I t  will never, however, occur in lower dimensions, and 
indeed, for the exponents, no long mean-field crossover behaviour has ever been 
reported for three-dimensional systems. This shows that in the limit c,+O, the 
dimension four plays an important role, due to the fact that random walks become 
transparent above it [8]. This should not, however, be confused with the critical 
dimension of the model, where the exponents assume their mean-field value. Due to 
the equivalence of the mole’s labyrinth with percolation, this dimension is six. Again, 
the distinction becomes clearer in the ballistic case, since there the trajectories already 
become transparent in  three dimensions. 

Some light was shed on the problem when a kinetic gelation model with periodically 
placed initiators [ 161 was simulated: this showed an amplitude ratio compatible with 
that of percolation. A likely reason for the observed behaviour is therefore the 
randomness in the distances separating the initiators in the usual model. This had 
already been pointed out in [8] but no detailed mechanism was suggested to connect 
the two effects. Unfortunately, we cannot improve upon this, except to the extent of 
saying that the effect is almost certainly not a genuine difference, but rather a very 
prolonged crossover. It would be of considerable interest, in this respect, to see whether 
a simulation counting the mass in terms of initiators would find an anomalous amplitude 
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ratio. The reason for this is that, as already noted in the case of the oscillations in the 
cluster size distribution, the difference between the two ways of counting the mass can 
still lead to very long-lived, although non-asymptotic, effects. 

In the case of the backbone the situation is more complex yet: in this case, even 
without assuming the lattice independence of d B B ,  a rigorous result due to van den 
Berg and Kesten [ 171 allows us to show an inconsistency between the observed values 
of p and v on the one hand and the observed value of d B B  on the other. The result 
can be cast in the following form: 

d B B S  d - 2 p l  v = 2 d f -  d. ( 4 . 2 )  

As p and v have been found to be compatible with the percolation values, this yields 
d B B i  2, in marked contrast to the observed value [ 7 ]  of dBB of 2.3. The resolution of 
this discrepancy is somewhat complex and shall be the main object of the following. 

First, let us sketch the derivation of ( 4 . 2 )  from the actual result of van den Berg 
and Kesten. In [ 1 8 ] ,  Chayes and Chayes prove the following fact from the original 
result of van den Berg and Kesten: if P ,  is the probability for a site to belong to the 
infinite cluster and Qx is the probabability of belonging to the backbone, i.e. of being 
connected to infinity by two disjoint paths, then one has 

from which ( 4 . 2 )  readily follows under suitable assumptions concerning the uniqueness 
of the infinite cluster, a hypothesis generally accepted for d S 6. Indeed, the number 
of sites in the infinite cluster (in the backbone) inside a box of size L is P , L d ( Q x L d ) .  
The above result holds for random percolation on an arbitrary translation-invariant 
lattice, and therefore also for the mole’s labyrinth. However, in this case, the quantity 
Q2 does not have the same meaning in the two interpretations. In the case of percolation 
on the r lattice, it indicates the probability that an initiator be connected to infinity 
by two paths passing through a disjoint set of initiators. In the mole’s labyrinth, however, 
in order for a site to belong to the backbone, it is sufficient that it be connected to 
infinity by two disjoint paths using all the points available. The difference becomes 
clearest according to figure 1 :  there the initiator denoted by X clearly belongs to the 
complement of the backbone in the ‘skeletal’ view shown in figure l ( a ) )  that only 
considers the initiators and the bonds connecting them. However, it belongs to the 
backbone in the ‘full’ diagram shown in figure l ( b ) ,  since there are two disjoint paths 
connecting it to infinity. This can be given a formal analogue in the r lattice as follows: 
if the random walks connecting two initiators are such that the two can be connected 
by two disjoint paths, we connect the corresponding points on the r lattice by a double 
bond. This makes the two definitions of the backbone identical. However, under these 
circumstances, the derivation of ( 4 . 2 )  is no longer valid in general. Indeed, in a lattice 
that had only double bonds, one would have d B B  = d f ,  in manifest contradiction to ( 4 . 2 ) .  

We therefore need to show that the two definitions of the backbone scale in the 
same way. Let us call the backbone on the lattice with double bonds the extended 
backbone. This consists of the ordinary backbone together with that part of the dangling 
ends connected to it by a path consisting entirely of double bonds. If one considers 
the infinite cluster discarding all single bonds, however, the cluster is separated into 
a large number of clusters of possibly large but finite size. This is a consequence of 
the fact that there is a finite probability that a bond is single, so that discarding them 
all brings one below the percolation threshold. Thus, that part of the dangling ends 
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I 
I ----- 

Figure I .  ( a )  and ( b )  show :he skeletal and full view of a certain part of an infinite cluster 
of kinetic gelation. Shown are three initiators, A, E and X. A and E are both supposed 
to be connected to infinity, each by its own path (indicated by a wavy line in both figures. 
Clearly, in ( a ) ,  X is a dangling end, whereas in ( b )  it belongs to the backbone. In  the 
latter, the trails of the initiator A is shown as a full line, that of B as a broken line and 
that of X as chain. 

which is tacked on to the ordinary backbone to form the extended backbone consists 
of clusters of a finite size A. This means that, to every point of the ordinary backbone, 
we are adding a finite number of clusters of finite size A, and  therefore the mass of 
the two backbones can at most differ by a factor A d .  They therefore scale the same 
way in the asymptotic limit. This issue brings out the probable reason for the dis- 
crepancy between theory and  numerical experiment quite clearly, however. In  order 
for the asymptotic regime to be reached, the correlation length 5 must be distinctly 
large than A, which may be quite a stringent requirement if the probability for double 
connection between initiators is high. Again, this might be checked by looking into a 
ballistic variation of the mole’s labyrinth, as pointed out above. 

As a final remark on the backbone, let us note that the above model is remarkably 
consistent with two otherwise quite puzzling facts: these are the values of the exponent 
describing the scaling of the length of the shortest path as a function of distance and  
of the diffusion exponent. As noted in the introduction, both of these are compatible 
with their percolation values. This would not be expected in the case of a fundamental 
change in the structure of the backbone. This is particularly true of the diffusion 
exponent, since it determines, via the Einstein relation, the scaling of the two-point 
conductivity as a function of distance. If, however, the backbone of kinetic gelation 
effectively consists of segments of dangling ends tacked on to the backbone of a 
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percolation cluster, these results would be easily understood: no shortest path passes 
through this additional mass and the current flowing through it is negligible. A test 
of this hypothesis would be to compute the backbone using only the connections 
between initiators and  measure its fractal dimension. Should it fall close to the 
percolation value, this would be a distinct argument in its favour. 

5. Conclusions 

Summarising, we have shown an  equivalence between the mole’s labyrinth and percola- 
tion on a rather complicated lattice. This settles the point of the universality class of 
the mole’s labyrinth model of kinetic gelation at finite initiator concentration: it is the 
same as percolation and  the equivalence to random percolation is exact. Since the 
peculiarities of the other models of kinetic gelation have all been encountered numeri- 
cally in the mole’s laybrinth, it is reasonable to assume that all these models are in 
the same universality class as percolation as well, and that the numerical evidence is 
tainted by crossover effects. Furthermore, as we have shown, these models can all be 
mapped onto models of percolation with rather complex short-range many-body 
correlations. This means that for small enough initiator concentration, the correlation 
length due to these correlations is small and  should have no effect on the critical 
behaviour or on the universality class. While this latter line of reasoning is certainly 
less convincing than displaying an exact equivalence between two models, it should 
be sufficient to make suspect any claim of a new universality class in models of the 
type of kinetic gelation. 

To make the equivalence between kinetic gelation and percolation, however, one 
needs to reckon the mass of a cluster as the number of initiators that were involved 
in its formation. Although we show that this does not make any difference in the 
asymptotic limit, very long-lived effects can indeed follow. The oscillations in the 
cluster size distribution are a case in point. We further show that various other 
differences are attributable to crossover effects. A conjecture concerning the precise 
nature of the effect involved in causing the crossover was made for the case of the 
above-mentioned oscillations as well as for the fractal dimension of the backbone of 
the infinite cluster. The most important unresolved issue remains the reason for the 
difference in the value of the amplitude ratio of the susceptibility. 

Finally, the following point should be made: at low initiator concentration, many 
mechanisms combine to make the critical region quite small. This may very well mean 
that, in actual physical situations, the predictions of percolation are essentially irrelevant 
and  the features typical of kinetic gelation determine the physics. 

Nore added in proof: After this article was submitted for publication, Dr  A Gonzalez informed me of related 
work by d e  Gennes  [19] where the mole’s labyrinth was first defined ( a n d  named ‘chain percolation’). His 
results are  parallel to those published here. In  particular, he  shows that for d 3 4, a long mean-field crossover 
is t o  be expected if C, + 0. 

References 

[ l ]  Manneville P and  d e  Seze L 1981 Numerical Methods in the Study of Crrtlcal Phenomena ed I della 

[2] Herrmann H J ,  Landau D P and  Stauffer D 1982 Phys. Reo. Lerr 49 412 
Dora, J Demongeat a n d  B Lacolle (Berlin:  Springer) 

Herrmann H 5 ,  Stauffer D and  Landau D P 1983 J .  Phys. A :  Math. Gen.  16 1221 



998 F Leyvraz 

[3] Pandey R B 1984 J.  S f a f .  Phys. 34 163 
[4] Agarwal S, Chhabra A and Landau D P 1985 Bull. A m .  Phys. Soc. 30 486 
[5] Chhabra A, Matthews-Morgan D, Landau D P and Herrmann H J 1985 Kinetics of Aggregation and 

Gelation ed F Family and D P Landau (Amsterdam: North-Holland 1984); J. Phys. A :  Mccth. Gen.  
18 L575 

[6] Jan N ,  Coniglio A, Herrmann H J, Landau D P, Leyvraz F and Stanley H E 1986 J. Phys. A :  Math. 
Gen. 19 L399 

[7] Chhabra A, Landau D P and Herrmann H J 1985 Proc. ICTP Symposium on Fractals ed L Pietronero 
and E Tosatti (Berlin: Springer) 

[8] Herrmann H J 1986 Phys. Rep. 136 143 
[9] Landau D P 1986 On Growth and Form: Fractal and Nonfractal Patterns in Physics ed H E Stanley 

and N Ostrowski (Dordrecht: Martinus Nijhoff) 
[ lo ]  Stanley H E 1977 J. Phys. A :  Math. Gen. 10 L211 
[ l l ]  Aharony A 1980 Phys. Rev. B 22 400 
[12] Rosenbluth M and Rosenbluth A 1955 J. Chem. Phys. 23 356 
[13] Majid I, Jan N,  Coniglio A and Stanley H E 1984 Phys. Rev. Lef t .  52 1257 
[14] Kim D Y ,  Herrmann H J and Landau D P 1987 Phys. Ret.. B 35 3661 
[151 Matthews-Morgan D and Landau D P 1984 Kinetics ofAggregation and Gelation ed F Family and 

[16] Bahadur N, Herrmann H J and Landau D P 1987 J. Phys. A :  Math. Gen. 20 L147 
[17] van den Berg J and Kesten H 1985 J. Appl. Prob. 22 556 
[18] Chayes J T and Chayes L 1986 Phys. Rev. Lett. 56 1619 
[ 191 de Gennes P G 1975 J. Physique 36 1049 

D P Landau (Amsterdam: North-Holland) 


